Thermodynamic Study of Niobium Oxides with O/Nb Ratios from 2.47 to 2.50 Using a High-Temperature Galvanic Cell

TSUNEO MATSUI AND KEIJI NAITO*

Department of Nuclear Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Received August 23, 1984; in revised form February 11, 1985

The partial molar free energy, enthalpy, and entropy of oxygen in niobium oxides with O/Nb ratios from 2.47 to 2.50 were measured with a galvanic cell in the temperature range from 1084 to 1325 K. The partial molar enthalpies of oxygen of the Nb₂O_{5-x} and V phases were observed to be nearly independent of composition, indicating the presence of only weak interactions between defects. The value of the slope for the plots of log x in Nb₂O_{5-x} against log P_{O_2} was observed to be -1/5.2 which is interpreted in terms of a defect structure involving both singly ionized and doubly ionized oxygen vacancies. The previously proposed phase diagram in the vicinity of Nb₂O_{5-x} was confirmed by the present emf measurements. © 1985 Academic Press, Inc.

Introduction

The phase relations, defect structures, and thermodynamic properties in the niobium-oxygen system have been studied by many investigators, and the results have been recently reviewed by the present authors (1).

As indicated in the review, thermodynamic quantities such as the partial molar enthalpy and entropy of oxygen in niobium oxides near Nb₂O₅ reported previously are inconsistent; for example, the values of the partial molar enthalpy of oxygen vary from -531 to -1074 kJ \cdot mole⁻¹ (3–7), and the presence of intermediate phases (1, 2, 6, 8, 9) between NbO₂ and Nb₂O₅ was scarcely considered in most studies. It is also noted that the compositional dependence of the partial molar entropy has not been discussed in relation to defect structures in the papers previously reported. In the present study, the oxygen partial pressure of the Nb₂O_{5-x}, V, IV, V + II, and V + IV phases (2) (see Fig. 4) was measured with a galvanic cell in the temperature range from 1084 to 1325 K to determine the partial molar enthalpy and entropy of oxygen, to elucidate the defect structure of Nb₂O_{5-x}, and also to confirm the previously reported phase diagram in the vicinity of Nb₂O₅.

Experimental

1. Samples

The Nb₂O₅ powder (99.99% purity) purchased was heated in air at 1023 K for about 3 hr before use to adjust the composition to be stoichiometric. Spectroscopic analysis of Nb₂O₅ powder showed the following main impurities (oxide in Nb₂O₅, weight ppm): Mn < 1, Mg < 1, Cr < 1, Al < 2, Fe < 2, V < 2, Sn < 2, Ti < 3, Zr < 3, W < 5, Mo < 10, Si < 10, and Ta < 30. The NbO₂

^{*} To whom correspondence is to be addressed.

powder was prepared by reducing Nb₂O₅ powder in a stream of dried hydrogen gas at 1273 K for 30 hr. The samples with O/Nb ratios from 2.4700 to 2.4994 were prepared by mixing the NbO₂ and Nb₂O₅ powders in appropriate ratios. The mixed powders were pressed into pellets and then sintered in evacuated and sealed quartz tubes at 1298 K for about 1080 hr. After sintering, the size of the pellets was about 8 mm in diameter and from 3 to 7 mm thick. The phases existing in the samples were identified by X-ray diffractometry. The oxygen content of the sample pellets was determined from the weight gain by oxidizing them to stoichiometric Nb₂O₅ in air at 1023 K for 50 hr.

2. Electromotive Force Measurements

The galvanic cell employed in this study was of the type

$$Nb_2O_{5-x}$$
 solid electrolyte air. (1)

The cell system is schematically shown in Fig. 1. A calcia (or yttria) stabilized zirconia tube $(ZrO_2 + 15\% \text{ mole}\% \text{ CaO} \text{ (or } Y_2O_3))$ with a flat closed end with inner diameter 17 mm, thickness 2 mm, and length 500 mm was used, as the solid electrolyte. Platinum paste was coated on the bottom of the inside surface of the closed end of the zirconia tube.

Platinum gauze with a platinum lead wire was then pushed against this paste with an alumina tube to obtain good contact. The alumina tube was also used for the air flow path into the inside of the zirconia tube. A sample pellet was placed against the outer flat surface of the closed end of the zirconia tube, and platinum foil was in turn placed against the sample. The platinum foil was pushed with a quartz pellet and a spring to ensure good contact with the sample. Argon gas, purified by passing through a titanium sponge oxygen getter, was used as the atmosphere on the sample side. This inert atmosphere ensures that the emf measured

FIG. 1. Schematic diagram of the galvanic cell assembly (1) solid electrolyte tube, (2) Pt cover, (3) spring (4) quartz pellet, (5) sample pellet, (6) pellets for oxygen getter, (7) quartz tube, (8) Pt foil, (9) Pt paste and gauze, (1) Pt lead wire, (11) air inlet, (12) air outlet, (13) alumina tube, (14) Ar inlet, (15) Ar outlet, (16) glass stopcock, (17) ground, (18) araldite seal.

by the cell is due to the sample, and not to the P_{O_2} of the atmosphere on the outside of the zirconia cell. On the sample side, several pieces of pellets with the same O/Nb composition as the sample pellet were placed near the sample to prevent it from being oxidized.

Electrical noise from the furnace was eliminated by placing a platinum foil cover around the sample and a grounded stainless-steel tube between the furnace and the quartz tube. The electromotive force measurements were carried out with a high impedance (>10⁹ ohm) microvoltmeter.

The partial molar free energy of oxygen in niobium oxide samples $(\Delta \bar{G}_{O_2})$ is obtained from the equation

$$\Delta \bar{G}_{O_2} = 4EF + \Delta \bar{G}_{O_2} (\mathbf{r}), \qquad (2)$$

where E is the electromotive force in millivolts, F the Faraday constant (23.069 cal/mV equivalent), and $\Delta \bar{G}_{02}$ (r) the partial

molar free energy of oxygen in the reference gas. The partial molar enthalpy and entropy of oxygen of samples were calculated from the value of $\Delta \tilde{G}_{O_2}$ thus obtained.

The galvanic cell was calibrated by measuring the oxygen potential of a two-phase mixture of Ni and NiO. The results obtained were in good agreement with those of Kiukkola and Wagner (10) and Saito (11) using a galvanic cell. Uncertainty in the $\Delta \bar{G}_{O_2}$ values is estimated to be at most ± 1.1 kJ \cdot mole⁻¹ in the temperature range from 1073 to 1373 K.

Results and Discussion

1. Thermodynamic Quantities

The partial molar free energies of oxygen $(\Delta \bar{G}_{O_2})$ of Nb₂O_{5-x} and intermediate phases (V, IV, V + IV, V + II) between NbO₂ and Nb₂O₅ which are calculated from the electromotive force by Eq. (2) are shown against temperature in Figs. 2 and 3, respectively. A good linear relationship be-

FIG. 2. Temperature dependence of the partial molar free energy of oxygen of Nb_2O_{5-x} . (O) Increasing temperature, (\bullet) decreasing temperature.

FIG. 3. Temperature dependence of the partial molar free energy of oxygen of $NbO_{2.4700}$, $NbO_{2.4802}$, and $NbO_{2.4900}$. (\bigcirc) Increasing temperature, ($\textcircled{\bullet}$) decreasing temperature.

tween ΔG_{0_2} and temperature and also good reproducibility of the $\Delta \bar{G}_{02}$ values with increasing and decreasing temperature are seen in these figures; the former fact indicates little temperature dependence of the partial molar enthalpy $(\Delta \bar{H}_{0_2})$ and entropy $(\Delta \bar{S}_{0})$ of oxygen of each phase in the temperature range measured in this study and the latter indicates no compositional change of the sample pellets within the experimental error during measurements. A change of slope in the plot of $\Delta \bar{G}_{O_2}$ vs temperature was observed at 1258 K for both NbO_{2.4802} and NbO_{2.4700} as shown in Fig. 3, although no slope change was seen for Nb_2O_{5-x} and $NbO_{2,4900}$. X-ray analysis of the samples quenched above and below 1258 K revealed that this temperature corresponded to the transition temperature from single phase V to a two-phase mixture of IV + V for NbO_{2.4802} and from a twophase mixture of II + V to single phase IV for NbO_{2.4700}. These phase transitions are consistent with the phase diagram for the

system between NbO₂ and Nb₂O₅ based on the electrical conductivity measurements by Naito *et al.* (2), which is shown in Fig. 4.

The partial molar enthalpy and entropy of oxygen in Nb₂O_{5-x} calculated from $\Delta \bar{G}_{0}$, values are shown in Figs. 5 and 6, respectively, and summarized in Table I together with the results previously reported (3-7). The partial molar enthalpy of oxygen of Nb_2O_{5-r} was observed to be nearly independent of composition, suggesting the presence of only a weak interaction between defects (line g). An absence in compositional dependence of $\Delta \bar{H}_{O_2}$ of Nb₂O_{5-x} has been also reported by Blumenthal et al. (line d) (3), Kofstad and Anderson (line b) (4), and Wimmer and Tripp (line c) (5), though their values of ΔH_{02} are lower than the present result. According to the phase diagram shown in Fig. 4, the compositional regions, where the measurements by Blumenthal et al. (3) and Kofstad and Anderson (4) were carried out, do not correspond to a single Nb₂O₅ phase region, but also include other intermediate phases: II, IV, and V phases for the case of Blumenthal et al. and III, IV, V, X, Y, and Z phases for Kofstad and Anderson. Hence, the partial molar enthalpies of oxygen reported as those

FIG. 4. Phase diagram of the system between NbO_2 and the Nb_2O_5 . (----) The composition and temperature range measured in this study.

FIG. 5. The compositional dependence of the partial molar enthalpy of oxygen. (a) $NbO_{2.42} + NbO_{2.47}$ (6); (b) Nb_2O_{5-x} (4); (c) Nb_2O_{5-x} (5); (d) Nb_2O_{5-x} (3); (e) $NbO_{2.477}$ (7); (f) $NbO_{2.482}$ (7). Present results (\bigcirc) for; (g) Nb_2O_{5-x} ; (h) phase V; (i) V + IV; (j) V + II; and (k) IV.

of Nb₂O_{5-x} by them (3, 4) are considered to correspond to the average values for many homologous phases including Nb_2O_{5-x} . Only the partial molar enthalpy reported by Wimmer and Tripp (line c) (5) is thought to be that for single-phase Nb_2O_{5-x} , considering the compositional region measured by them. The disagreement in the partial molar enthalpy of Nb_2O_{5-x} between the present (1163-1293 K) and the previous results by Wimmer and Tripp (1223-1573 K) may be caused partly by the difference in the temperature of the measurements. The partial molar enthalpy and entropy of oxygen of phases V, IV, and two-phase mixtures V + IV and V + II (Nb₁₂O₂₉) obtained in this

FIG. 6. The compositional dependence of the partial molar entropy of oxygen. (×) Previous results (3); present study: (•) Nb_2O_{5-x} , (\bigcirc) V, (\triangle) V + IV, (\bigtriangledown) IV, and (\square) V + II.

(II, III, IV, V, Nb ₂ O ₅) ^a 2.461 –2.497 722–66' (av. 686					
	722-667 (av. 686)	228-301	1073-1343	EMF	m
$(X, Y, Z, III, IV, V,)^{a}$ 2.4500–2.4985 862	862	1	1200-1683	TGA	4
ND_2O_{5-x} 2.4950–2.4988 732	732	ł	1223-1573	TGA	S.
Nb.0, $\sum_{i=1}^{n}$ (52 ± 2)	622 ± 20	329 ± 16			
0.4990 ± 0.0002 621 ±	621 ± 8	308 ± 6			
2.4982 ± 0.0002 613 \pm	613 ± 7	275 ± 6	1163-1293	EMF	This study
2.4977 ± 0.0002 $625 \pm$	625 ± 8	269 ± 7			
2.4945 ± 0.0002 627 ± 1	627 ± 15	235 ± 12			

TABLE I Partial Molar Enthalpies and Entropies of Oxygen of Nd₂O_{5-x} MATSUI AND NAITO

TABLE II	Partial Molar Enthalpies and Entropies of Oxygen of Intermediate Phases between NbO ₂ and Nb ₂ O
----------	--

		1258-1524	280 ± 2	739 ± 29	2.4802 ± 0.0002	V + IV
		1084-1323	227 ± 1	652 ± 12	2.4900 ± 0.0002	>
This study	EMF	1124-1258	211 ± 4	653 ± 5	2.4802 ± 0.0002	٨
		1144-1258	166 ± 2	609 ± 25	2.4700 ± 0.0005	$\mathbf{V} + \mathbf{II}(\mathbf{Nb}_{12}\mathbf{O}_{29})$
		1258-1325	206 ± 1	658 ± 20	2.4700 ± 0.0005	IV
7	TGA	1253	l	531.4	2.482	۵ (۸)
7	TGA	1253	ļ	690.4	2.477	$(II + V)^{a}$
6	TGA	1273-1373	528.06	1073.5 ^b	2.472-2.488	$NbO_{2,47} + NbO_{2,50}$
6	TGA	1273-1373	185.6 ^b	645.4 ^b	2.424-2.468	$NbO_{2.42} + NbO_{2.47}$
Ref.	Method	Temp. (K)	$-\Delta \overline{S}_{0_2}$ (J K ⁻¹ · mole ⁻¹)	$-\Delta ar{H}_{\mathrm{O_2}}$ (kJ \cdot mole ⁻¹)	O/Nb	Phases

ų, d 0 ^{*a*} The phases in parentheses are estimated from the original data in the literature (7) by the present author Naito *et al.* (2).

^b These values are calculated from the original data in the literature (6) by the present authors.

study are also shown in Figs. 5 and 6, respectively. Though the partial molar enthalpy of oxygen of a two-phase mixture of V + II is a little higher than that of Nb₂O_{5-x}, those of phases V, IV, and a twophase mixture of V + IV are lower than those of Nb₂O_{5-x}. It is noted that the partial molar enthalpy of oxygen of Nb₂O_{5-x} reported by Blumenthal *et al.* (3) nearly corresponds to the average value of the phases V + IV, V + II, IV, and V determined in this study. The partial molar enthalpy of oxygen of phase V was observed to be nearly independent of composition, similar to that of Nb₂O_{5-x}.

The enthalpies of formation of niobium oxides (NbO_x, $0.324 \leq x \leq 2.490$) have been measured by Inaba et al. (13) with a Tian-Calvet-type calorimeter and they suggested a higher value $(-476 \text{ kJ} \cdot \text{mole}^{-1})$ than the literature values (3-6) as the average of the partial molar enthalpy of oxygen in the region between $NbO_{2,42}$ and $NbO_{2,50}$. Although the partial molar enthalpies of oxygen obtained in this study were found to be higher than the values reported previously (3-6), except that of NbO_{2.482} by Grude and Flad (7) as seen in Fig. 5, they are still not high enough to explain the average value $-476 \text{ kJ} \cdot \text{mole}^{-1}$ proposed by calorimetry. This discrepancy suggests that the partial molar enthalpy of oxygen of phase IV may vary largely with the composition, $2.468 \le O/Nb \le 2.472$ at 1300 K. To clarify the discrepancy, a thermodynamic study of niobium oxides with O/Nb ratio less than 2.47 with a galvanic cell utilizing a thoria-yttria solid electrolyte is required, in order to measure very low oxygen partial pressures.

The partial molar entropies of oxygen of Nb₂O_{5-x}, V, IV, a two-phase mixture of V + II and that of V + IV obtained in this study are given in Fig. 6 together with the results reported previously (3). A linear relationship between $\Delta \bar{S}_{O_2}$ and log x is seen for Nb₂O_{5-x} and phase V, indicating the

presence of a single type of defects with a weak interaction between them. In the ΔS_{O_2} data for the phase Nb_2O_{5-x} reported by Blumenthal et al. (3), which is shown if Fig. 6, it is difficult to observe the presence of a linear relationship between $\Delta \bar{S}_{O_2}$ and log x, presumably owing to the scatter of the data. It is also noted from the figure that the values of $\Delta \bar{H}_{O_2}$ and $\Delta \bar{S}_{O_2}$ obtained for a twophase mixture of V + II and those for V +IV are higher and lower than those of phase V, respectively, which indicates that the values of $\Delta \hat{H}_{O_2}$ and $\Delta \hat{S}_{O_2}$ for phases II and IV near the phase boundary with phase V are higher and lower than those of phase V, respectively. The values of ΔH_{0} , and ΔS_{0} , for phase IV (O/Nb = 2.4700) obtained in this study, however, are close to those of phase V as seen in Figs. 5 and 6, which implies that the values of $\Delta \tilde{H}_{O_2}$ and $\Delta \bar{S}_{O_2}$ for phase IV decrease rapidly with increasing O/Nb ratio. The partial molar enthalpy and entropy of oxygen for a two-phase mixture of V + IV calculated preliminary, $\Delta \bar{H}_{0_2} =$ $-1005 \text{ kJ} \cdot \text{mole}^{-1}$ and $\Delta \bar{S}_{\text{O}_2} = -469 \text{ J} \cdot$ mole⁻¹ · K^{-1} by the present authors (1) from the data of the electrical conductivity measurements (1283-1473 K) by Naito et al. (2) are lower than those of V + IV obtained in this study. Since the O/Nb ratio of phase IV at the phase boundary with phase V increases rapidly with temperature as seen in Fig. 4, it is expected that the values of $\Delta \bar{H}_{O_2}$ and $\Delta \bar{S}_{O_2}$ for a two-phase mixture of V + IV obtained at higher temperature from the electrical conductivity measurements are lower than those obtained in this study at lower temperature.

2. Defect Structure

The relations between log x in Nb₂O_{5-x} and log P_{O_2} obtained in this study are shown in Fig. 7 together with the results reported previously for homologous phases between NbO₂ and Nb₂O₅ (2-5, 10). The discontinuities in the figure (line a) show the presence of homologous phases (2).

FIG. 7. The relation between log x in Nb₂O_{5-x} and oxygen partial pressure for the phases between NbO₂ and Nb₂O₅. (a, . . .) Naito *et al*. (2); (b, $-\cdot-\cdot$) Wimmer and Tripp (5); (c, ---) Blumenthal *et al*. (3); (d, $-\cdot\cdot-\cdot$) Kofstad and Anderson (4, 12); (e, present results): -**O**-, Nb₂O_{5-x}; -O-, phase V; ∇ , phase IV; Δ , V + IV; \Box , V + II.

log(R, /Pa)

The value of the slope for the plots of log x in Nb₂O_{5-x} against log P_{O_2} in this study is -1/5.2 in the temperature range from 1173 to 1283 K. This value is in good agreement with the value -1/5 for Nb₂O_{5-x} reported by Wimmer and Tripp (3), although the composition x in Nb₂O_{5-x} in the present study is a little larger than their composition at the same oxygen partial pressure. The value of the slope -1/5.2 is close to -1/5. The latter can be interpreted by a defect model involving both singly ionized oxygen vacancies (V_0) and doubly ionized oxygen vacancies (V_0) with the concentration ratio $V_0/V_0 = 2$, provided that the concentration ratio scarcely varies with the oxygen partial pressure. The value -1/5.2 obtained in this study, which can be interpreted by a defect ratio of $V_0/V_0^{"} = 1.3$, is somewhat different from the values -1/4.2 to -1/4.8 determined from the oxygen partial pressure dependence of the electrical conductivity in the temperature range from 1283 to 1573 K by Naito et al. (2). This difference in slope is probably due to the different in temperature measured, which causes the difference in the concentration ratio V_0/V_0° . The value of slope of the straight line in the plot of the partial molar entropies of oxygen against $\log x$ in NbO_{2.5-x} in Fig. 6 is about 23 (=5R \times 2.3). This value is directly derived from the value of the slope for the plots of $\log x$ against log P_{O_2} shown in Fig. 7, since log P_{O_2} is considered to be proportional to ΔS_{O_2} when the value of $\Delta \bar{H}_{0_2}$ is nearly constant against composition (x).

The slope for the plots of log x against log P_{0} , for phase V is about -1/3 in the temperature range from 1123 to 1223 K as shown in Fig. 7, which corresponds to the value of the slope $(3R \times 2.3)$ of the straight line in the plot of the partial molar entropy of oxygen against $\log x$ in phase V in Fig. 6. This slope -1/3 is different from the values -1/7.8 to -1/4.7 which were determined from the slopes for the plots of $\log \sigma$ vs log P_{O_2} for phase V (σ : electrical conductivity) in the temperature range from 1283 to 1573 K (2). The complex defect consisting of a Nb₂₅O₆₂-type Wadsley defect and singly ionized oxygen vacancy has been proposed to explain the oxygen partial pressure dependence of the electrical conductivity for phase V (2). A defect structure consisting of oxygen vacancies, quasi-free electrons, and tetravalent niobium ions has been proposed for phases X, Y, and Nb_2O_{5-r} by Kikuchi and Goto (14) and for phase IV by Marucco (15). To interpret the oxygen partial pressure dependence of both log σ and $\log x$ for phase V without contradiction, a similar defect model involving neutral oxygen vacancies, neutral and singly ionized $Nb_{25}O_{62}$ -type Wadsley defects (V_{wad} and V_{wad}), quasi-free electrons, and tetravalent niobium ions is assumed. The defect equations are written as

$$O_0 = V_0 + \frac{1}{2}O_2, \qquad (3)$$

$$K_1 = [V_0] \cdot P_{O_2}^{1/2}, \qquad (4)$$

$$25Nb_{28}O_{70} = 28Nb_{25}O_{62} + 7O_2, \qquad (5)$$

or

$$\frac{25}{28}\text{Nb}_{28}\text{O}_{70} = V_{\text{wad}} + \frac{1}{4}\text{O}_2, \qquad (5')$$

$$K_2 = [V_{wad}] \cdot P_{O_2}^{1/4}, \tag{6}$$

$$V_{\rm wad} = V_{\rm wad}^{\cdot} + e, \qquad (7)$$

$$K_3 = [V_{\text{wad}}] \cdot [e] / [V_{\text{wad}}]$$
(8)

$$= \{ [V_{wad}] \cdot [e] \cdot P_{O_2}^{n_4} \} / K_2,$$

where K_1 and K_2 are equilibrium constants. By assuming that some of the quasi-free electrons liberated from the singly ionized Wadsley defect (V_{wad}) can be retrapped in the valence band of some Nb⁵⁺ ions on the normal lattice site, the following defect equations are given

$$e + Nb_{Nb} = Nb'_{Nb}, \qquad (9)$$

$$K_4 = [Nb'_{Nb}]/[e].$$
 (10)

From the condition of electroneutrality,

$$[e] + [Nb'_{Nb}] = [V_{wad}].$$
(11)

Thus, compositional change x is considered to be proportional to $P_{O_2}^{-1/2}$ — $P_{O_2}^{-1/8}$ depending on the concentration ratios of $[V_0]$, $[V_{wad}]$, and $[V_{wad}]$ from the equations

$$x \propto [V_0] + 2[V_{wad}]_{total}$$

= [V_0] + 2([V_{wad}] + [V_{wad}])
= K_1 P_{\bar{O}_2}^{1/2} + 2[K_2 \cdot P_{\bar{O}_2}^{1/4} + \{K_2 K_3 (1 + K_4)\}^{1/2} \cdot P_{\bar{O}_2}^{-1/8}]. (12)

On the other hand, the electrical conductiv-

ity σ is found to be proportional to $P_{O_2}^{-1/8}$ from the equations

$$\sigma \propto [e] = \frac{[V_{\text{wad}}]}{1 + K_4}$$
$$= \left(\frac{K_2 K_3}{1 + K_4}\right)^{1/2} \cdot P_{O_2}^{-1/8}. \quad (13)$$

The oxygen partial pressure dependence of log σ obtained experimentally at 1283 K ($\sigma \propto P_{O_2}^{-1/7.8}$) is consistent with the dependence given by Eq. (13) and the experimental dependence of log x ($x \propto P_{O_2}^{-1/3}$) is given by Eq. (12), assuming $[V_0] \simeq [V_{wad}] \ge [V_{wad}]$.

References

- 1. K. NAITO AND T. MATSUI, Solid State Ionics 12, 125 (1984).
- 2. K. NAITO, N. KAMEGASHIRA, AND N. SASAKI, J. Solid State Chem. 35, 305 (1980).
- R. N. BLUMENTHAL, J. B. MOSER, AND D. H. WHITMORE, J. Amer. Ceram. Soc. 48, 617 (1965).
- 4. P. KOFSTAD AND P. B. ANDERSON, J. Phys. Chem. Solids 21, 280 (1961).
- J. M. WIMMER AND W. C. TRIPP, Aerospace Research Laboratories Report 73-0157 (1973).
- 6. J. F. MARUCCO, J. Solid State Chem. 10, 211 (1974).
- 7. G. GRUBE AND M. FLAD, KWI Metaliforschung, Stuttgart, Germany (1945).
- 8. S. KIMURA, J. Solid State Chem. 6, 438 (1973).
- H. SCHAFER, D. BERGNER, AND R. GRUEHN, Z. Anorg. Allg. Chem. 31, 365 (1969).
- K. KIUKKOLA AND C. WAGNER, J. Electrochem. Soc. 104, 379 (1957).
- 11. Y. SAITO, J. Nucl. Mater. 51, 112 (1974).
- 12. P. KOFSTAD, J. Less-Common Met. 14, 153 (1968).
- 13. H. INABA, T. MIMA, AND K. NAITO, J. Chem. Thermodyn. 16, 411 (1984).
- 14. T. KIKUCHI AND M. GOTO, J. Solid State Chem. 16, 363 (1976).
- 15. J. F. MARUCCO, J. Chem. Phys. 76, 649 (1979).